上一主题 下一主题
ScriptCat,新一代的脚本管理器脚本站,与全世界分享你的用户脚本油猴脚本开发指南教程目录
返回列表 发新帖

CNN运动鞋识别

[复制链接]
  • TA的每日心情

    2025-8-16 01:57
  • 签到天数: 196 天

    [LV.7]常住居民III

    765

    主题

    6739

    回帖

    7398

    积分

    管理员

    非物质文化遗产社会摇传承人

    积分
    7398

    荣誉开发者油中2周年生态建设者

    发表于 昨天 04:20 | 显示全部楼层 | 阅读模式

    数据集
    https://www.heywhale.com/mw/dataset/62feeea455804632ba14168d/file
    上次的代码改一下dataloader,84%正确率直接过

    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets
    import torch.nn.functional as F
    import os,PIL,pathlib
    import os,PIL,random,pathlib
    
    data_dir = './spot_photos/train'
    data_dir = pathlib.Path(data_dir)
    data_paths = list(data_dir.glob('*'))
    classeNames = [str(path).split("\\")[1] for path in data_paths]
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
        transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
        transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
            mean=[0.7059, 0.6968, 0.6866], 
            std=[0.3064, 0.3054, 0.3145]) 
    ])
    
    train_dataset = datasets.ImageFolder("./spot_photos/train/",transform=train_transforms)
    test_dataset  = datasets.ImageFolder("./spot_photos/test/",transform=train_transforms)
    
    batch_size = 32
    
    def make_dataloaders(train_dataset, test_dataset, batch_size=32, num_workers=0):
        train_dl = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=num_workers)
        test_dl = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=num_workers)
        return train_dl, test_dl
    
    class Network_bn(nn.Module):
        def __init__(self):
            super(Network_bn, self).__init__()
            self.conv1 = nn.Conv2d(3, 12, 5, stride=1, padding=2)
            self.bn1 = nn.BatchNorm2d(12)
            self.conv2 = nn.Conv2d(12, 12, 5, stride=1, padding=2)
            self.bn2 = nn.BatchNorm2d(12)
            self.pool = nn.MaxPool2d(2,2)
    
            self.conv4 = nn.Conv2d(12, 24, 5, stride=1, padding=2)
            self.bn4 = nn.BatchNorm2d(24)
            self.conv5 = nn.Conv2d(24, 24, 5, stride=1, padding=2)
            self.bn5 = nn.BatchNorm2d(24)
    
            # 添加dropout
            self.dropout = nn.Dropout(0.2)
            self.fc1 = nn.Linear(24*56*56, len(classeNames))
    
        def forward(self, x):
            x = F.relu(self.bn1(self.conv1(x)))
            x = F.relu(self.bn2(self.conv2(x)))
            x = self.pool(x)
    
            x = F.relu(self.bn4(self.conv4(x)))
            x = F.relu(self.bn5(self.conv5(x)))
            x = self.pool(x)
    
            x = x.view(-1, 24*56*56)
            x = self.dropout(x)  # 在全连接前加dropout
            x = self.fc1(x)
            return x
    model = Network_bn().to(device)
    
    def test (dataloader, model, loss_fn):
        size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
        num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
        test_loss, test_acc = 0, 0
    
        # 当不进行训练时,停止梯度更新,节省计算内存消耗
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
    
                # 计算loss
                target_pred = model(imgs)
                loss        = loss_fn(target_pred, target)
    
                test_loss += loss.item()
                test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc  /= size
        test_loss /= num_batches
    
        return test_acc, test_loss
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
        num_batches = len(dataloader)   # 批次数目,1875(60000/32)
    
        train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
        for X, y in dataloader:  # 获取图片及其标签
            X, y = X.to(device), y.to(device)
    
            # 计算预测误差
            pred = model(X)          # 网络输出
            loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
    
            # 反向传播
            optimizer.zero_grad()  # grad属性归零
            loss.backward()        # 反向传播
            optimizer.step()       # 每一步自动更新
    
            # 记录acc与loss
            train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
    
        train_acc  /= size
        train_loss /= num_batches
    
        return train_acc, train_loss
        # On Windows the DataLoader with multiple workers requires the
        # `if __name__ == '__main__'` guard. Use next(iter(...)) to fetch
        # a single batch without indexing the DataLoader.
    train_dl, test_dl = make_dataloaders(train_dataset, test_dataset, batch_size=batch_size, num_workers=0)
    batch = next(iter(test_dl))
    X, y = batch
    
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    
    loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
    learn_rate = 1e-3 # 学习率
    opt        = torch.optim.SGD(model.parameters(),lr=learn_rate)
    
    epochs     = 20
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
    
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    torch.save(model.state_dict(), f'best_model_epoch{epoch}.pth')
    print('Done')
    checkpoint_path = 'best_model_epoch19.pth'
    if os.path.exists(checkpoint_path):
        state_dict = torch.load(checkpoint_path, map_location=device)
        model.load_state_dict(state_dict)
        start_epoch = 20
    else:
        start_epoch = 0
    
    loss_fn = nn.CrossEntropyLoss()
    new_lr = 1e-4
    opt = torch.optim.SGD(model.parameters(), lr=new_lr, momentum=0.9, weight_decay=1e-4)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, mode='min', factor=0.5, patience=3)
    
    extra_epochs = 10
    train_loss = []
    train_acc  = []
    test_loss  = []
    test_acc   = []
    
    for epoch in range(start_epoch, start_epoch + extra_epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
    
        # 调度器基于验证损失调整学习率
        scheduler.step(epoch_test_loss)
    
        template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}')
        print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    
    torch.save(model.state_dict(), f'best_model_epoch_END.pth')
    print('Done')
    混的人。
    ------------------------------------------
    進撃!永遠の帝国の破壊虎---李恒道

    入驻了爱发电https://afdian.com/a/lihengdao666

    发表回复

    本版积分规则

    快速回复 返回顶部 返回列表