上一主题 下一主题
ScriptCat,新一代的脚本管理器脚本站,与全世界分享你的用户脚本油猴脚本开发指南教程目录
返回列表 发新帖

CNN好莱坞明星识别

[复制链接]
  • TA的每日心情

    2025-8-16 01:57
  • 签到天数: 196 天

    [LV.7]常住居民III

    765

    主题

    6739

    回帖

    7398

    积分

    管理员

    非物质文化遗产社会摇传承人

    积分
    7398

    荣誉开发者油中2周年生态建设者

    发表于 昨天 05:52 | 显示全部楼层 | 阅读模式

    数据集https://www.heywhale.com/mw/dataset/63072841b7dcdc54975ad5d0
    用VGG-16代替网络

    model = models.vgg16(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False  # 冻结前面所有层
    model.classifier._modules['6'] = nn.Linear(4096, len(classeNames))  # 只训练最后一层
    model = model.to(device)

    其他什么都不用动,完整代码

    import torch
    train_acc  = []
    import torch
    import torch.nn as nn
    import torchvision.transforms as transforms
    import torchvision
    from torchvision import transforms, datasets, models
    import torch.nn.functional as F
    import os
    import PIL
    import pathlib
    import random
    
    data_dir = './person_photos/'
    data_dir = pathlib.Path(data_dir)
    total_datadir = './person_photos/'
    data_paths = list(data_dir.glob('*'))
    classeNames = [str(path).split("\\")[1] for path in data_paths]
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
        transforms.ToTensor(),
        transforms.Normalize(
            mean=[0.4849, 0.4179, 0.3943],
            std=[0.3205, 0.2929, 0.2896])
    ])
    
    total_data = datasets.ImageFolder(total_datadir, transform=train_transforms)
    train_size = int(0.8 * len(total_data))
    test_size = len(total_data) - train_size
    # 使用固定随机种子保证每次划分一致
    seed = 42
    gen = torch.Generator()
    gen.manual_seed(seed)
    train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size], generator=gen)
    print(f"训练集样本数: {len(train_dataset)}")
    print(f"测试集样本数: {len(test_dataset)}")
    
    batch_size = 32
    
    def make_dataloaders(train_dataset, test_dataset, batch_size=32, num_workers=0):
        train_dl = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size,
                                               shuffle=True,
                                               num_workers=num_workers)
        test_dl = torch.utils.data.DataLoader(test_dataset,
                                              batch_size=batch_size,
                                              shuffle=True,
                                              num_workers=num_workers)
        return train_dl, test_dl
    
    # 使用 VGG-16 替代自定义网络,并调整最后的分类层以匹配类别数
    num_classes = len(classeNames)
    model = models.vgg16(pretrained=True)
    for param in model.parameters():
        param.requires_grad = False  # 冻结前面所有层
    model.classifier._modules['6'] = nn.Linear(4096, len(classeNames))  # 只训练最后一层
    model = model.to(device)
    
    def test(dataloader, model, loss_fn):
        size = len(dataloader.dataset)
        num_batches = len(dataloader)
        test_loss, test_acc = 0, 0
        with torch.no_grad():
            for imgs, target in dataloader:
                imgs, target = imgs.to(device), target.to(device)
                target_pred = model(imgs)
                loss = loss_fn(target_pred, target)
                test_loss += loss.item()
                test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    
        test_acc /= size
        test_loss /= num_batches
        return test_acc, test_loss
    
    def train(dataloader, model, loss_fn, optimizer):
        size = len(dataloader.dataset)
        num_batches = len(dataloader)
        train_loss, train_acc = 0, 0
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)
            pred = model(X)
            loss = loss_fn(pred, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
            train_loss += loss.item()
    
        train_acc /= size
        train_loss /= num_batches
        return train_acc, train_loss
    
    train_dl, test_dl = make_dataloaders(train_dataset, test_dataset, batch_size=batch_size, num_workers=0)
    batch = next(iter(test_dl))
    X, y = batch
    
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    
    loss_fn = nn.CrossEntropyLoss()
    learn_rate = 1e-3
    opt = torch.optim.SGD(model.parameters(), lr=learn_rate, momentum=0.9, weight_decay=1e-4)
    
    # 动态学习率配置:可选择 'cosine', 'step', 'reduce_on_plateau'
    scheduler_type = 'cosine'
    epochs = 20
    
    # 创建调度器
    if scheduler_type == 'cosine':
        scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(opt, T_max=epochs)
    elif scheduler_type == 'step':
        scheduler = torch.optim.lr_scheduler.StepLR(opt, step_size=5, gamma=0.5)
    elif scheduler_type == 'reduce_on_plateau':
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(opt, mode='min', factor=0.5, patience=3)
    else:
        scheduler = None
    train_loss = []
    train_acc = []
    test_loss = []
    test_acc = []
    
    for epoch in range(epochs):
        model.train()
        epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
        model.eval()
        epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
        train_acc.append(epoch_train_acc)
        train_loss.append(epoch_train_loss)
        test_acc.append(epoch_test_acc)
        test_loss.append(epoch_test_loss)
        # 根据调度器类型更新学习率
        if scheduler is not None:
            if scheduler_type == 'reduce_on_plateau':
                scheduler.step(epoch_test_loss)
            else:
                scheduler.step()
    
        current_lr = opt.param_groups[0]['lr']
        template = ('Epoch:{:2d}, LR:{:.6f}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
        print(template.format(epoch+1, current_lr, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
    torch.save(model.state_dict(), f'best_model_epoch{epoch}.pth')
    print('Done')

    Epoch:20, LR:0.000000, Train_acc:57.5%, Train_loss:1.328, Test_acc:48.3%,Test_loss:1.613

    混的人。
    ------------------------------------------
    進撃!永遠の帝国の破壊虎---李恒道

    入驻了爱发电https://afdian.com/a/lihengdao666

    发表回复

    本版积分规则

    快速回复 返回顶部 返回列表